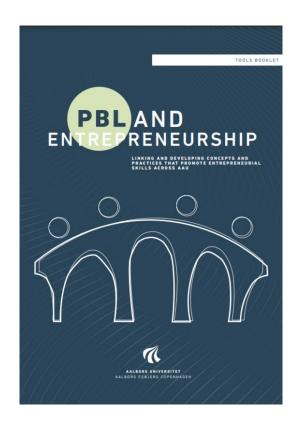


Project design and implementation Cycle of Seminar

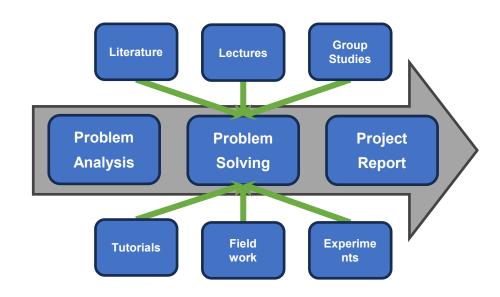
Fredrik Fogh Sørensen

PhD Student, Aalborg University


24 November 2023

Introduction

How can we define entrepreneurship?

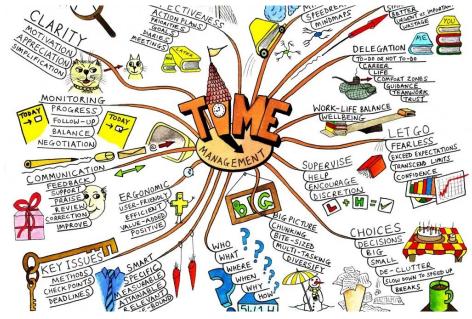


Problem-Based Learning (PBL)

- Students develop as self-directed life-long learners
- Students can identify and address complex scientific problems
- Students can define their own learning needs
- Students can seek relevant information and knowledge to address complex problems
- Students are competent communicators and collaborators

Entrepreneurial Competencies

- Challenging to design a project
- Multiple aspects to consider
 - Ideas & Opportunities
 - Resources
 - Into Action


Ideas & Opportunities

- Defining project objectives
- Brainstorm Importance of innovation
- External Collaboration
- Group Creation

https://ingelsoong.com/how-to-make-a-mind-map/

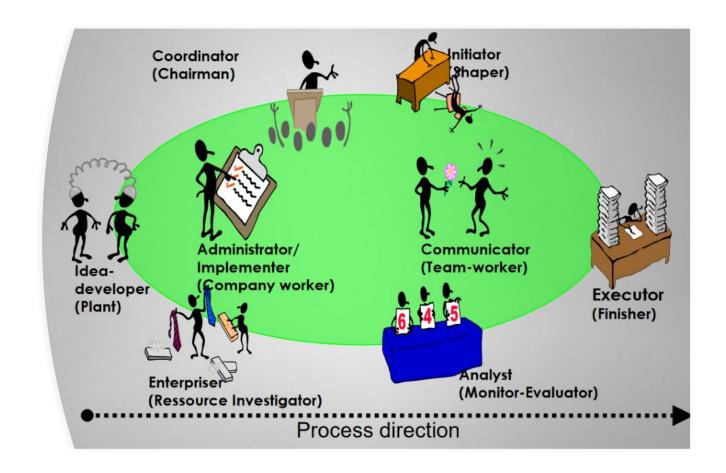
Ideas & Opportunities

- Clearly defined objective:
- o Bad:

"Upgrade the organization's IT infrastructure"

- Why?
 - No specified objective.
 - No specific timeframe.
- Good:

"Upgrade the organization's IT infrastructure to reduce downtime and enhance system performance, achieving a 30% decrease in system-related issues within the next six months."



Collaboration

- Teamwork
- Knowledge sharing
- Roles
- Conflicts

Resources

- Manpower
 - Skillset
- Courses/Lectures
 - Lectures to obtaining the right competences
 - Learning general theory
- Literature
 - Project specific learning
- Tutorials
 - Support for project specific tools etc.
- Field work
 - Find unforeseen problems

Types of resources

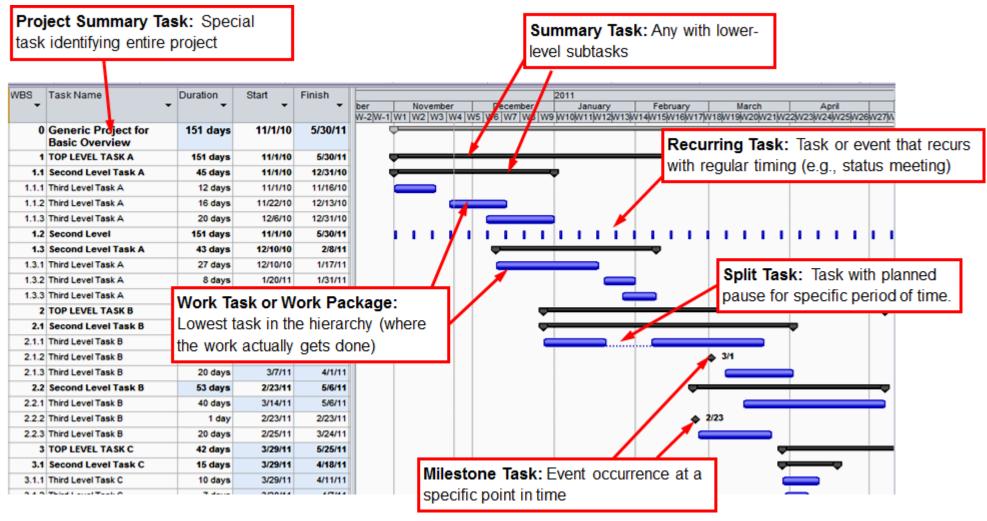
https://blog.ganttpro.com/en/how-to-allocate-resources/

Budgeting

- Crucial in project design
- Fixed costs:
 - Salaries
 - Rent
 - Licenses and permits
- Variable costs:
 - Materials
 - Temporary Staff
 - Travel Expenses

https://blog.ganttpro.com/en/how-to-allocate-resources/

Timeline


- Define milestones (The end goal is known)
- Backcasting or backward scheduling/planning
- Critical Path Analysis
- Divide into smaller tasks

Gantt Chart

https://www.e-education.psu.edu/geog871/l5_p5.html

Considerations & Risks

- Budget Constraints
- External effects
 - Material shortage E.g., Pandemic
- Milestone not obtained?

Into Action

- Prototype/Analysis
 - Iterative design process
 - Verify the impact of the solution
- Revisit time-schedule
- Highlight new risks/opportunities



Supervision/Board

- Meetings through the project
 - Internal / External (stakeholder)
- Guidance
- Owner of the project and thereby responsible for the success

Project communication

- Communicating ideas effectively
- Creating compelling visuals
- o Presentation of project, where?
- Group exam (At AAU)
 - Companies can be part of the censor team

https://teachinginnc.wordpress.com/2017/08/16/dream-it-project-part-iv/

Evaluation

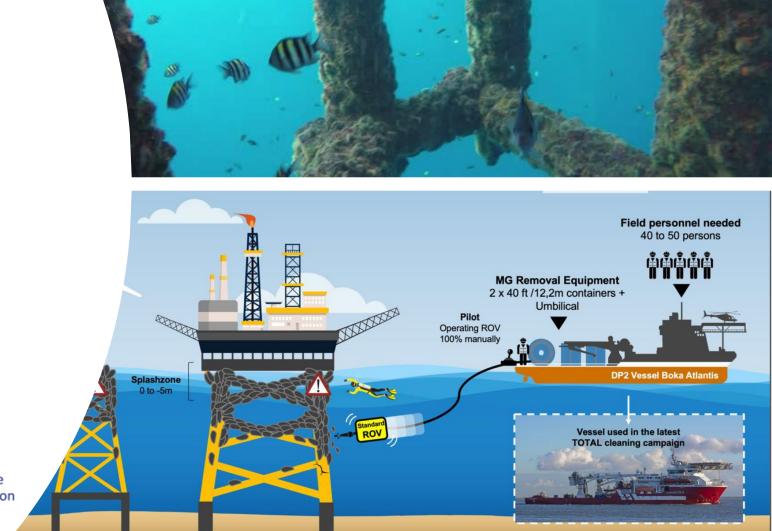
- Analyzing successes and challenges
- Continuous improvement mindset

https://teachinginnc.wordpress.com/2017/08/16/dream-it-project-part-iv/

Break

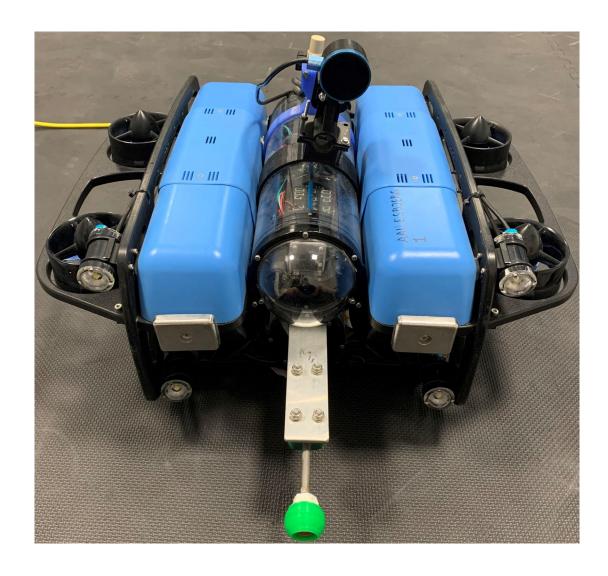
Case: ACOMAR

- Master Thesis
 - Initiated by a local company



Proof of Concept

- The problem
- Current solution



Proof of Concept

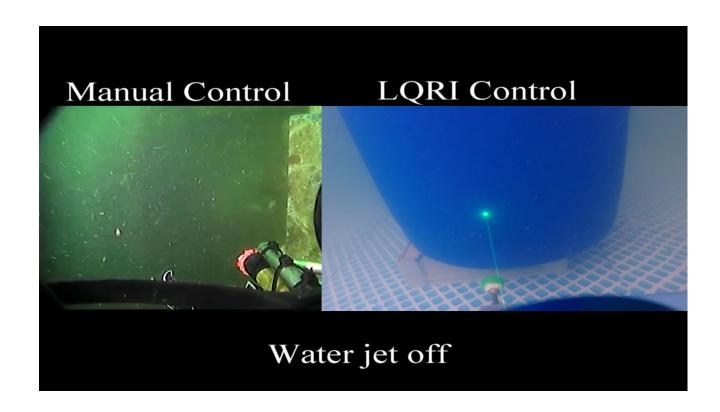
- BlueROV2 (Used for semester projects)
- Existing hardware reconfigured
- Collaboration with company

Master Thesis

- Group Project
- 1 Year
- Cooperation with company

Test facilities

- Corona Lockdown
- Garage Laboratory



Proof of Concept Completed

- Results in laboratory
- Master thesis
- Phd and employment in company

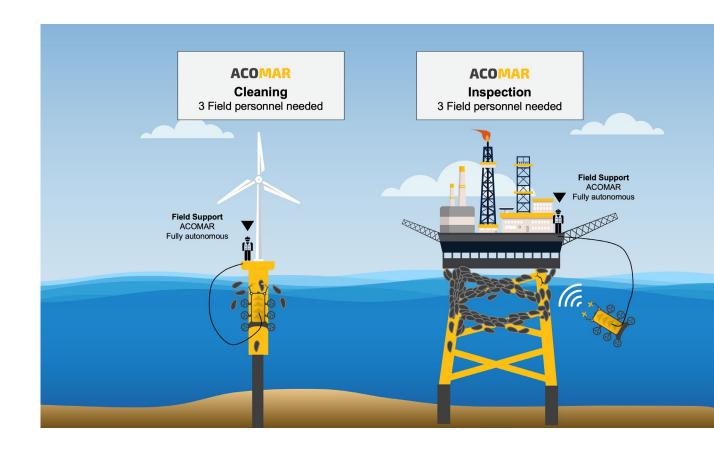
Beginning of ACOMAR

- Kick-off
 - Results from master-project
 - Brainstorm
- Close collaboration between University and companies

Beginning of ACOMAR

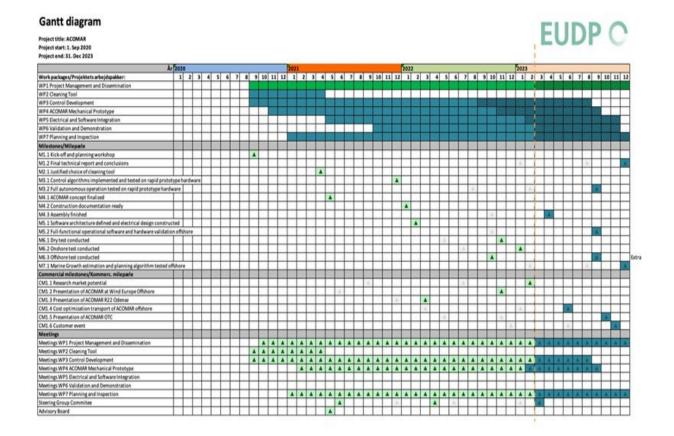
"Develop a specialized fully automated underwater vehicle, which can remove marine growth from underwater structures with the ability to launch from platform, with at least same cleaning efficiency."

The project is set to be completed with in 3,5 years.



Risks

- The ACOMAR cannot be launched from the platform and the vessel is therefore still a requirement for campaigns. However, the combination of the ACOMAR prototype and the automation algorithms can still improve the inspection and cleaning efficiency.
- The ACOMAR prototype (either electrical, software or hardware) cannot be integrated and a conventional ROV must be used instead. In this case the improvement in inspection and cleaning efficiency will rely on the effect of the automation algorithms.



Gant Chart

- Work package
- Milestones (Technical)
- Commercial Milestones
- Meetings

Rapid prototype

- Changed strategy for rapid prototype
- Advantages
 - Able to perform offshore tests
 - Shorter time to market
- Disadvantages
 - Longer time to initial testing
 - More complex vehicle

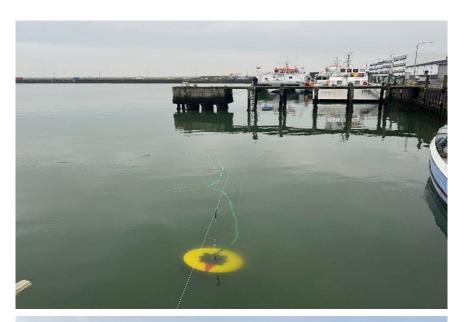


ACOMAR

- Initial design of vehicle
- Testing in harbor
- Improvements
- Iterative design
- Testing offshore
- Evaluation

Unforeseen risks

- Propellers damaged will cleaning
- Electrical speed controllers suddenly failed



ACOMAR

- Improvements based on offshore experience
- Planned pilot project

Marketing

Status video through project

Marketing

- Promotion of engineering educations
- Press releases
- Promotion of vehicle to industry

Gantt diagram

Project title: ACOMAR Project start: 1. Sep 2020 Project end: 31. Dec 2023

	202		3779	100	- 8	9.9	37977	1	pana.	- 14	2	021	12-14		4	191		1000				022	4 1	100	170	11.91	110	414	4 4	1-15		123	1	Albert .	1 1	HAT	17,45	40	2000	121,78	
Work packages/Projektets arbejdspakker:			3	4	5	6	7 8	9	10	11	12	1	2 3	4	5	6	7	8 9	10	11			3	4	5	6	7 8	9	10	11	12	1 3	3	4	5	6	7	8	9 10	11	17
NP1 Project Management and Dissemination				\neg	т	т																										T	10	1000	100	99 B	W 1	18 10	of con-	888	
WP2 Cleaning Tool	\top	П		\neg	т	т										Т	Т				\neg				Т		Т	П	П			Т	T		П	\top	T	Т	\top	П	
WP3 Control Development					Т										-81													100	200		av v	N 10	100	(1000)	800	100 M	001				
WP4 ACOMAR Mechanical Prototype																												120			00.0		ħ.			Ø. 1		88 W			
WPS Electrical and Software Integration															163			188															Ŧ.			 8	81	88	0.00	100	
WP6 Validation and Demonstration										\neg																						100	l de		800	Ø 1		ē ø	100		Г
WP7 Planning and Inspection										\neg			1980		(800			N NO	200														ko.		***	(i)	88	Ø 10	8.000	***	
Milestones/Milepæle				0.0	T		100																																		
M1.1 Kick-off and planning workshop		П		\neg	т	т	Т			╛	т	Т				\top	т			П	\neg	$\overline{}$	Т	П	\neg	\top	т		П	\neg		т	1		П		Т	Т			Т
M3.2 Final technical report and conclusions					\top	Т	\top			\neg	\top	\top				\top		\top			\neg	\top			\neg		Т			\neg	- 1		1		П			A.			7
M2.1 Justified choice of cleaning tool										\neg	T			Δ											\neg		Т				\neg		1		П			\top			
M3.1 Control algorithms implemented and tested on rapid prote	otype	hardw	vare			Т															A				\neg				П	\neg		Т			П	1		T			П
M3.2 Full autonomous operation tested on rapid prototype hard	fware									\neg	T																1						1		\Box						Г
M4.1 ACOMAR concept finalized	T					Т				\neg	Т				A				П	П				П					П				1		П						
M4.2 Construction documentation ready	$\overline{}$				т	т				╛	т	т	т			7	т			П		4		П	\neg		т		П		\neg	т	1		П		\top	т		П	Г
44. 3 Assembly finished		П		\neg	т	т	\top	П	П	╛	т	Т				т	т		П	П	\neg		Т	П	┱	т	т			╗	\neg	т	1	878	П			T		П	Г
45.1 Software architecture defined and electrical design constru	ucted				Т					╛	т					7	т				\neg	A			7		т		П	\neg	_	т			П						Г
M5.2 Full-functional operational software and hardware validati	on off	Shore			Т	Т				\neg							Т								\neg		Т			\neg	\neg	Т			П						Г
M6.1 Dry test conducted	Т				\top	Т				\neg	\top	Т				\top	Т					\top			A		Т					Т			П		\top				Г
M6.2 Onshore test conducted					Т					\neg						Т									\neg	1/4					- 1	V.									Г
M6.3 Offshore test conducted																													Δ							7		1/4			
M7.1 Marine Growth estimation and planning algorithm tested of	offshor	re																					Г									1					1	60			E
Commercial milestones/Kommerc. milepæle	100						100					0	103					100								- 6					- 0										
CM1.1 Research market potential					T	Т				\neg	T	Т				T	Т	16							\exists	- 4						I/A						T			Ξ
CM1.2 Presentation of ACOMAR at Wind Europe Offshore					Т					\neg	Т	\top				A.	Т								\neg	\top	Т		П	A	\neg	Т						T			
CM1.3 Presentation of ACOMAR R22 Odense				\neg	Т	Т	Т			\neg	T	Т				Т	Т	Т			6	\top	A		\neg		Т					Т					T	\mathbf{T}			Π
CM1.4 Cost optimization transport of ACOMAR offshore					Т	Т				\neg	Т	Т				Т	Т						W		\neg		Т				- 0							\top			
CM1.5 Presentation of ACOMAR OTC	Т	П		\neg	Т	Т	Т			Т	Т	Т	Т			т	Т	Т	П	П	\neg	\top	Т	П	K	Т	Т	Т	П	$\langle A \rangle$	\neg	Т					\top	Т	TA.		П
CM1.6 Customer event					Т					\neg	\top	Т													\neg		Т				182	Т			П	(4)				KA	Π
Meetings									8						100						123							116													
Meetings WP1 Project Management and Dissemination															A	A /	37	M	A	A	A .	A A	A	Δ	A	A	M	Δ		Δ	A /	M	A	E			30				ı
Meetings WP2 Cleaning Tool								Δ	Δ	A	A .	4	A	Δ																											
Meetings WP3 Control Development								Δ			A .	A 7	M	A	Δ	4		M	A	Α	A	AA	A	Δ	A	A	M	A		A		M	A	23	B	23 F	31				
Meetings WP4 ACOMAR Mechanical Prototype												A	A	A	Δ	A 7	A	M	A	A	A .	AA	A	Δ	A	AA	A	A	A	A	A /	N A	1A	73	13		37	3 7			
Meetings WP5 Electrical and Software Integration																																					T				ſ
Meetings WP6 Validation and Demonstration																																					T				ſ
Meetings WP7 Planning and Inspection											- 1	A	A	Α		A	M	YZ	A	A	A	AA	A	A	A	A	A	A	A	A	A /	Y	A	73	13	23 F	47	NV	IP	13	
Steering Group Committee					T											4					A.			A		A					- 0	0	27			3-	T				
Advisory Board															TA1										\neg										\Box						Г

WP7 - Inspection

- Synthetic images
- Artificial Intelligent/Machine Learning
- Classification/Thickness estimation

